Old Bank Primary Academy

Chapter 6 - Year Five

Year 5 (1-12 x tables, 1 $6 x$ tables inverses)	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	Revise Y1-2 Strategies.	Revise Y1-2 Strategies.	Revise Y1-2 Strategies.	As per Spring 1	As per Spring 2	As per Summer 1
	Revise Y3-4 Strategies.	Revise Y3-4 Strategies.	Revise Y3-4 Strategies.	Multiply a fraction by a whole number.	Increase and decrease integers by scale factors.	Divide by 8 Find 12.5\%
	Add fractions with different denominators.	Add / subtract fractions different denominators.	Add / subtract fractions different denominators.	Multiply by 2.5 Multiply by 12.5	Divide a fraction by a whole number.	Find 11\% Find 2.5\%
	Subtract fractions with different	Multiply by 0.9	Multiply by 0.9 or 9.9			
	denominators.	Multiply by 9.9	Find 90\%			
			Find 80\%			
			Multiply by 0.8			

- All green concepts are new learning for the half term.
- All black concepts are revision of prior learning.
- There are 16 key concepts to learn and understand during Year Five.
- In addition, the 1-6 x tables are expected to be known as inverses / times tables families with instant recall.
- During Year Five, all Key Stage 1 and LKS2 concepts will be revised and consolidated on a half-termly basis.

Page 23 - Adding Fractions

$3 / 5+1 / 4$	$5 / 21+2 / 14$	$8 / 36+1 / 18$
$2 / 6+1 / 4$	$4 / 15+2 / 5$	$2 / 3+2 / 12$
$3 / 24+5 / 8$	$3 / 18+1 / 9$	$9 / 25+3 / 15$
$6 / 14+1 / 5$	$7 / 11+3 / 7$	$20 / 35+3 / 21$

$2 / 3+1 / 4$	$3 / 7+2 / 14$	$4 / 9+1 / 18$
$3 / 8+1 / 4$	$6 / 10+2 / 5$	$1 / 3+2 / 27$
$2 / 16+3 / 8$	$2 / 3+1 / 9$	$2 / 5+1 / 15$
$1 / 4+1 / 6$	$2 / 9+3 / 7$	$2 / 8+3 / 7$

$2 / 3-1 / 4$	$3 / 7-2 / 14$	$4 / 9-1 / 18$
$3 / 8-1 / 4$	$6 / 10-2 / 5$	$1 / 3-2 / 27$
$12 / 16-3 / 8$	$2 / 3-1 / 9$	$2 / 5-1 / 15$
$1 / 4-1 / 6$	$5 / 9-3 / 7$	$4 / 8-7 / 14$

AIM	SMART STRATEGY (Tell me)	EXAMPLE (Show Me)
Multiply any number by 0.9	- Divide your starting number by 10 . - Subtract this from your starting number.	- $70 \times 0.9=$? - $70 \div 10=7$ - $70-7=63$ - So, $70 \times 0.9=63$

80×0.9	100×0.9	80×0.9
170×0.9	450×0.9	800×0.9
$3,200 \times 0.9$	45×0.9	$8,000 \times 0.9$
16×0.9	0.6×0.9	1.3×0.9

AIM	SMART STRATEGY (Tell me)	EXAMPLE (Show Me)
Multiply any number by 9.9	- Divide your starting number by 10 (answer 1) - Multiply your starting number by 10 (answer 2) - Subtract answer 1 from 2	- $60 \times 9.9=$? - $60 \times 10=600$ - $60 \div 10=6$ - $600-6=594$ - So, $60 \times 9.9=594$

60×9.9	100×9.9	80×9.9
170×9.9	450×9.9	800×9.9
$3,200 \times 9.9$	45×9.9	$8,000 \times 9.9$
16×9.9	0.6×9.9	1.3×9.9

30×9.9	80×9.9	70×9.9
140×9.9	860×9.9	300×9.9
$3,600 \times 9.9$	75×9.9	$9,400 \times 9.9$
17×9.9	0.4×9.9	1.6×9.9

297	792	693
126	851.4	2,970
35,640	742.5	93,060
168.3	3.96	15.84

AIM	SMART STRATEGY (Tell me)	EXAMPLE (Show Me)
Find 90% of any number	- Understand that $90 \%=9 / 10$ - Understand that $90 \%=0.9$ - Follow our Smart Strategy for multiplying any number by 0.9	- $70 \times 0.9=$? - $70 \div 10=7$ - $70-7=63$ - So, $70 \times 0.9=63$

$60 \times 90 \%$	$100 \times 90 \%$	$80 \times 9 / 10$
$170 \times 90 \%$	$90 \% \times 450$	800×0.9
$320 \times 90 \%$	90% of 45	$564 \times 90 \%$
90% of 16	$0.6 \times 90 \%$	$90 \% \times 1.3$

AIM	SMART STRATEGY (Tell me)	EXAMPLE (Show Me)
Find 80% of any number	- Understand that $80 \%=8 / 10$ - Divide your starting number by 10 then multiply by 8 . - Or, because $8 / 10=$ $4 / 5$, divide by 5 and multiply by 4	- 80% of $90=$? - $90 \div 10=9$ - $9 \times 8=72$ - $\mathrm{Or}, 90 \div 5=18,18 \mathrm{x}$ $4=72$ - So, 80% of $90=72$

$60 \times 80 \%$	$100 \times 80 \%$	$80 \times 8 / 10$
$170 \times 80 \%$	$80 \% \times 450$	$800 \times 4 / 5$
$320 \times 80 \%$	80% of 45	$560 \times 80 \%$
80% of 16	$0.6 \times 80 \%$	$80 \% \times 1.3$

AIM	$\frac{\text { SMART STRATEGY }}{(\text { Tell me) }}$	EXAMPLE (Show Me)
Multiply any number by 0.8	- Understand that $0.8=8 / 10$ and that $0.8=80 \%$ - Follow our Smart Strategy for finding 80% of any number	- $90 \times 0.8=$? - $90 \div 10=9$ - $9 \times 8=72$ - $\mathrm{Or}, 90 \div 5=18,18$ x $4=72$ - So, $90 \times 0.8=72$

60×0.8	$100 \times 80 \%$	$190 \times 8 / 10$
170×0.8	0.8×450	$650 \times 4 / 5$
320×0.8	0.8 of 45	560×0.8
0.8×16	0.6×0.8	0.8×1.3

AIM	SMART STRATEGY (Tell me)	EXAMPLE (Show Me)
Multiply a fraction by a whole number.	- Multiply your numerator by the whole number, also known as a 'multiplier'. - Leave the denominator. - Simplify if possible	- $5 / 6 \times 6=$? - $5 \times 6=30$ - $5 / 6 \times 6=30 / 6$ - This can be simplified to $5 / 1$ or simply '5'

$2 / 3 \times 5$	$1 / 3 \times 18$	$12 / 15 \times 7$
$4 / 7 \times 3$	$8 / 14 \times 8$	$9 / 15 \times 8$
$9 / 11 \times 7$	$12 / 17 \times 9$	$5 / 19 \times 16$
$13 / 4 \times 16$	$8 / 15 \times 26$	$4 / 7 \times 6.5$

AIM	$\frac{\text { SMART STRATEGY }}{\text { (Tell me) }}$	EXAMPLE (Show Me)
Multiply any Number by 2.5	- Double your starting number - Halve your starting number - Add your two answers together	- $240 \times 2.5=$? - $240 \times 2=480$ - $1 / 2$ of $240=120$ - $480+120=600$ - $\mathrm{So}, 240 \times 2.5=$ 600

6×2.5	12×2.5	86×2.5
14×2.5	18×2.5	942×2.5
26×2.5	124×2.5	726×2.5
370×2.5	48.8×2.5	6.46×2.5

AlM	SMART STRATEGY (Tell me)	EXAMPLE (Show Me)
Multiply any Number by 12.5	- Multiply your number by 10 - Follow our Smart Strategy to multiply any number by 2.5 - Add your two answers together.	- $240 \times 12.5=$? - $240 \times 10=2,400$ - $240 \times 2=480$ - $1 / 2$ of $240=120$ - $480+120=600$ - $2,400+600=3,000$ - So, $240 \times 12.5=\mathbf{3 , 0 0 0}$

$$
\begin{array}{|c|c|c|}
\hline 6 \times 12.5 & 12 \times 12.5 & 86 \times 12.5 \\
\hline 14 \times 12.5 & 18 \times 12.5 & 942 \times 12.5 \\
\hline 26 \times 12.5 & 124 \times 12.5 & 726 \times 12.5 \\
\hline 370 \times 12.5 & 48.8 \times 12.5 & 6.46 \times 12.5 \\
\hline
\end{array}
$$

AIM	SMART STRATEGY (Tell me)	EXAMPLE (Show Me)
Increase and decrease integers by scale factors.	- Understand that 'increase' means to multiply by and 'decrease' means to divide by any given number.	- 8 increased by a scale factor of $7=$ $8 \times 7=56$ - 72 decreased by a scale factor of $9=$ $72 \div 9=8$

Increase \mathbb{N} by a scale factor of

Increase...
 7 by 9
 12 by 11
 16 by 22
 Decrease...
 72 by 9
 132 by 11
 84 by 7

Decrease \mathbb{N} by a scale factor of

AlM	SMART STRATEGY (Tell me)	EXAMPLE (Show Me)
Divide a fraction by a whole number.	- Divide your numerator by the divisor (whole number). - If this is impossible, multiply your divisor by the denominator instead.	- $2 / 3 \div 2=$? - $2 \div 2=1$, so it's $1 / 3$ - $4 / 7 \div 3=$? - $7 \times 3=21$ so it's $4 / 21$

$$
\begin{array}{|c|c|c|}
\hline 2 / 3 \div 5 & 1 / 3 \div 18 & 12 / 15 \div 7 \\
\hline 4 / 7 \div 4 & 8 / 14 \div 8 & 16 / 15 \div 8 \\
\hline 9 / 11 \div 7 & 18 / 25 \div 9 & 45 / 59 \div 15 \\
\hline 13 / 14 \div 16 & 8 / 15 \div 25 & 4 / 7 \div 6
\end{array}
$$

AIM	$\frac{\text { SMART STRATEGY }}{\text { (Tell me) }}$	EXAMPLE (Show Me)
Divide any number by 8	- Halve your starting number - Halve it again, then again. - Or, if you can, use a bus stop division and $8 x$ tables facts	- $7,280 \div 8=$? - $7,280 \div 2=3,640$ - $3,640 \div 2=1,820$ - $1,820 \div 2=910$

$240 \div 8$	$368 \div 8$	$160 \div 8$
$480 \div 8$	$432 \div 8$	$1,600 \div 8$
$960 \div 8$	$1,248 \div 8$	$456 \div 8$
$3,280 \div 8$	$8.4 \div 8$	$184 \div 8$

AIM	$\frac{\text { SMART STRATEGY }}{\text { (Tell me) }}$	EXAMPLE (Show Me)
Find 12.5% of any number	- Follow our Smart Strategy for dividing any number by 8 - Or, find 10% and then find 2.5%, adding them together	- 12.5% of $8,000=$? - $8,000 \div 8=1,000$ - Or, $10 \%=800$ and $\begin{aligned} & 2.5 \%=200 \text { so } 800 \\ & +200=1,000 \end{aligned}$

$240 \times 12.5 \%$	12.5% of 368	$160 \times 12.5 \%$
$480 \times 12.5 \%$	$432 \times 12.5 \%$	$600 \times 12.5 \%$
12.5% of 960	12.5% of 248	$456 \times 12.5 \%$
12.5% of 3,280	8.4 $\times 12.5 \%$	12.5% of 1,840

AIM	$\frac{\text { SMART STRATEGY }}{\text { (Tell me) }}$	EXAMPLE (Show Me)
Find 11% of any number	- Divide starting number by 10 - Divide starting number by 100 - Add both answers together	- 11% of $3,400=$? - $3,400 \div 10=340$ - $3,400 \div 100=34$ - $340+34=374$

$240 \times 11 \%$	11% of 368	$160 \times 11 \%$
$480 \times 11 \%$	$432 \times 11 \%$	$600 \times 11 \%$
11% of 960	11% of 248	$456 \times 11 \%$
11% of 3,280	8.4 $\times 11 \%$	11% of 1,840

AIM	$\frac{\text { SMART STRATEGY }}{\text { (Tell me) }}$	EXAMPLE (Show Me)
Find 2.5% of any number	- Divide your starting number by 100 to find 1% - Follow our Smart Strategy to multiply any number by 2.5	- 2.5% of $2,600=$? - $2,600 \div 100=26$ - $26 \times 2=52$ - $1 / 2$ of $26=13$ - $52+13=65$

$240 \times 2.5 \%$	2.5% of 368	$160 \times 2.5 \%$
$480 \times 2.5 \%$	$432 \times 2.5 \%$	$600 \times 2.5 \%$
2.5% of 960	2.5% of 248	$456 \times 2.5 \%$
2.5% of	8.4 3,280	2.5% of 1,840

Chapter 7 - Year Six

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer term
Year 6 (1-12 x tables, 1-12 x tables inverses)	Revise Y1-2 Strategies. Revise Y3-4 Strategies. Revise Y5 Strategies. Fractions of amounts. Calculate percentages. Find 0.5\% of a number.	As per Autumn 1 Multiply a fraction by a fraction. Convert a mixed number to an improper fraction	As per Autumn 2 Convert an improper fraction to a mixed number Divide a fraction by another fraction. Divide a decimal number by a onedigit divisor.	As per Spring 1 Apply X / ㄴ by 10, 100 and 1000 to converting measures.	Revision of all Smart Strategies. Daily sessions, Mathsbot.com, SATs past paper workshops, targeted starter tasks.

- All green concepts are new learning for the half term.
- All black concepts are revision of prior learning.
- There are 9 key concepts to learn and understand during Year Six, including complex conversions knowledge.
- In addition, the all x tables are expected to be known as inverses / times tables families with instant recall.
- During Year Six, all Years 1-5 concepts will be revised and consolidated on a half-termly basis.

AlM	SMART STRATEGY (Tell me)	EXAMPLE (Show Me)
Calculate fractions of amounts	- Divide your starting number by the denominator (bottom) using a bus stop method. - Multiply the answer by your numerator (top). - Remember to use any unit of measure needed, eg: £, kg	- $4 / 7$ of $£ 5,635=$? - $5,635 \div 7=805$ - $805 \times 4=3,220$ - So, $4 / 7$ of $£ 5,635=$ £3,220

$2 / 5$ of 750	$5 / 6$ of 660	$2 / 7$ of 350
$4 / 11$ of 121	$3 / 8$ of 960	$3 / 2$ of 840
$7 / 9$ of 630	$5 / 8$ of 7,264	$7 / 3$ of 51
$3 / 16$ of 4,800	$12 / 5$ of 455	$11 / 3$ of 510

AIM	$\frac{\text { SMART STRATEGY }}{\text { (Tell me) }}$	EXAMPLE (Show Me)
Calculate percentages of amounts	- Divide your starting number by 100 to find 1\% - Multiply the answer by whatever percentage you are looking for.	- 13% of $700=$? - $700 \div 100=7$ - $7 \times 10=70,7 \times 3=$ 21 - So, 7×13 must be 91 - 13% of $700=91$

6% of 700	11% of 600	4% of 3,500
11% of 1,500	21% of 1,400	2% of 840
20% of 600	8% of 1,200	7% of 500
17% of 4,800	3% of 455	4.5% of 500

13% of 700	15% of 600	3% of 3,500
4% of 1,500	12% of 1,400	7% of 840
16% of 600	51% of $1,200^{\circ}$	98% of 500°
38% of $4,800^{\circ}$	8% of 455	3.5% of 500°

13% of 900	6% of 8,000	9% of 3,500
7% of 1,500	8% of 1,800	5% of 840
4% of 20,000	51% of $3,400^{\circ}$	97% of 900°
38% of $7,600^{\circ}$	7% of 675	7.5% of 800°

AlM	SMART STRATEGY (Tell me)	EXAMPLE (Show Me)
Calculate higher percentages of amounts	- For some percentages, it's easier to use number bonds to 100 and subtract. - For example, finding 98% is easier if you find 2% then subtract this from your starting number rather than multiplying by 98.	- 93% of $800=$? - $100-93=7$ - Let's find 7% and subtract... - $800 \div 100=8$ - $8 \times 7=56$ - $800-56=744$ - $\mathrm{So}, 93 \%$ of $800=744$

96% of 700	95% of 600	94% of 3,000
91% of 1,500	99% of 1,400	92% of 840
93% of 600	98% of 1,200	97% of 500
97% of 4,800	83% of 450	85% of 500

AIM	SMART STRATEGY (Tell me)	EXAMPLE (Show Me)
Find 0.5\% of any number	- Divide your starting number by 100 to find 1%. - Halve your answer to find half of one percent.	- 0.5% of 680 - $680 \div 100=6.8$ - $1 / 2$ of $6.8=3.4$ - So, 0.5% of $680=$ 3.4

$240 \times 0.5 \%$	0.5% of 300	$1,600 \times 0.5 \%$
$480 \times 0.5 \%$	$400 \times 0.5 \%$	$600 \times 0.5 \%$
0.5% of 960	0.5% of 248	$760 \times 0.5 \%$
0.5% of	8.4 3,280	0.5% of 0.5%

AIM	$\frac{\text { SMART STRATEGY }}{\text { (Tell me) }}$	EXAMPLE (Show Me)
Multiply a fraction by another fraction	- Multiply the numerators - Multiply the denominators - Simplify if possible	- $2 / 3 \times 4 / 5=$? - $2 \times 4=8$ - $3 \times 5=15$ - $2 / 3 \times 4 / 5=8 / 15$

$2 / 3 \times 3 / 8$	$7 / 8 \times 3 / 5$	$4 / 7 \times 2 / 5$
$5 / 6 \times 9 / 12$	$2 / 9 \times 9 / 14$	$3 / 6 \times 3 / 6$
$11 / 13 \times 7 / 9$	$18 / 20 \times 9 / 10$	$7 / 9 \times 7 / 8$
$16 / 19 \times 17 / 21$	$13 / 19 \times 23 / 35$	$34 / 50 \times 14 / 20$

AIM	SMART STRATEGY (Tell me)	EXAMPLE (Show Me)
Convert a mixed number to an improper fraction	- Multiply the whole number by the denominator. - Add the numerator of the fraction.	- $51 / 4=$? - $5 \times 4=20$ - $20+1=21$ - $5 \frac{1}{4}=21 / 4$

2 and $3 / 8$	7 and $4 / 7$	10 and $2 / 5$
3 and $1 / 6$	9 and $3 / 9$	19 and $2 / 3$
13 and $7 / 10$	12 and $1 / 2$	18 and $2 / 4$
$851 / 4$	$911 / 2$	$3461 / 4$

Can any of these be simplifieded?

4 and $5 / 8$	8 and $4 / 9$	9 and $2 / 7$
6 and $2 / 7$	12 and $3 / 5$	17 and $2 / 3$
26 and $7 / 10$	16 and $3 / 4$	40 and $7 / 8$
$4351 / 4$	$2361 / 2$	873 and $1 / 5$

Can any of these be simplified?

AIM	SMART STRATEGY (Tell me)	EXAMPLE (Show Me)
Convert an improper fraction to a mixed number	- Divide the denominator by the numerator to find the whole number. - Use the remainder to create a new numerator. - Do not change the denominator.	- $23 / 5=$? - $23 \div 5=4 r 3$ - $23 / 5=4$ and $3 / 5$

$12 / 5$	$16 / 7$	$21 / 4$
$19 / 9$	$34 / 5$	$37 / 6$
$757 / 3$	$3,546 / 8$	$438 / 7$
$320 / 15$	$267 / 13$	$235 / 23$

Can any of these be simplified?

> | > 2 and $2 / 5$ | 2 and $2 / 7$ | 5 and $1 / 4$ |
| :---: | :---: | :---: |
| > 2 and $1 / 9$ | 6 and $4 / 5$ | 6 and $1 / 6$ |
| 252 and | 443 and | 62 and $4 / 7$ |
| > $1 / 3$ | $2 / 8(1 / 4)$ | |
| > 21 and | 20 and | 10 and |
| > $5 / 15(1 / 3)$ | $7 / 13$ | $5 / 23$ |
| > | | |

Multiply by the reciprocal of the divisor.

$$
\begin{aligned}
& \frac{3}{4} \div \frac{1}{8} \\
& \frac{3}{4} \times \frac{8}{1}
\end{aligned}
$$

Find the product and simplify

$$
\begin{aligned}
\frac{3}{4} \times \frac{8}{1} & =\frac{24}{4} \\
& =6
\end{aligned}
$$

1. One over eight is swapped to become eight over one.
2. The division symbol is then swapped for a multiplication.
3. Here, we now see 3×8 and 4×1 because we have turned the problem into a fraction x fraction task.

$$
\begin{array}{|c|c|c|}
\hline 2 / 5 \div 3 / 4 & 368 \div 8 & 160 \div 8 \\
\hline 4 / 5 \div 5 / 8 & 432 \div 8 & 1,600 \div 8 \\
\hline 6 / 9 \div 8 / 9 & 1,248 \div 8 & 456 \div 8 \\
\hline 3 / 14 \div 2 / 5 & 9 / 84 \div 8 / 17 & 3 / 4 \div 12 / 19 \\
\hline
\end{array}
$$

Can any of these be simplified?

1. This method allows us to carry on instead of needing to stop at a remainder.
2. It is well-suited to calculations involving money or measures.
3. Make sure the decimal points align and just carry on the calculation...

$55 \div 4$	$368 \mathrm{~mm} \div 6$	$163 \mathrm{~kg} \div 2$
$475 \mathrm{~kg} \div 8$	$43.2 \mathrm{~cm} \div 7$	$£ 57.60 \div 5$
$6150 \mathrm{~g} \div 9$	$1,248 \div 3$	$459.6 \div 3$
$37.14 \mathrm{~g} \div 5$	$968.4 \mathrm{~g} \div 8$	$23.94 \mathrm{~g} \div 7$

Stop @fter 马ళ马 decimal places :)

See your SS Document at the beck

This will help you with the next page.o.

$36 \mathrm{~km}=\ldots \ldots \mathrm{m}$	$\mathrm{cm}=2 \mathrm{~m}$	$\ldots \mathrm{km}=8,600 \mathrm{~m}$
475m = __km	$\mathrm{mm}=86 \mathrm{~cm}$	$\mathrm{km}=900 \mathrm{~m}$
$18 \mathrm{~cm}=\ldots \ldots \mathrm{mm}$	$\mathrm{mm}=1 \mathrm{~m}$	$\mathrm{m}=576 \mathrm{~cm}$
$18 \mathrm{~cm}=\ldots \mathrm{m}$	$18 \mathrm{~cm}=\ldots \ldots \mathrm{km}$	$\ldots \mathrm{mm}=4.5 \mathrm{~m}$

Converting Mass

1. There are similarities here with converting metric measurements for length and capacity / volume.
2. Notice how we multiply by 1,000 to turn a larger unit into a smaller one (because there are more of them).
3. To turn a smaller unit into a larger one, we divide by 1,000 as there are fewer.

How do we multiply by 1,000 easily?

$36 \mathrm{~kg}=\ldots \ldots \mathrm{g}$	$\ldots \mathrm{g}=2 \mathrm{~kg}$	$\ldots \mathrm{~kg}=8,600 \mathrm{~g}$
$475 \mathrm{~g}=\ldots \ldots \mathrm{kg}$	$\ldots \mathrm{g}=86 \mathrm{~kg}$	$\ldots \mathrm{~kg}=900 \mathrm{~g}$
$18 \mathrm{~kg}=\ldots \ldots \mathrm{g}$	$\ldots \mathrm{kg}=100 \mathrm{~g}$	$\ldots \mathrm{~kg}=576 \mathrm{~g}$
$18.6 \mathrm{~kg}=\ldots \ldots \mathrm{g}$	$1.096 \mathrm{~kg}=\ldots \mathrm{g}$	$\ldots \ldots \mathrm{kg}=45 \mathrm{~g}$

How do we divide by 1,000 easily?

1. There are similarities here

Converting Capacity

$1000 \mathrm{ml}=1 \mathrm{l}$	
$\frac{1}{10} \mathrm{l}=0.1 \mathrm{l}=100 \mathrm{ml}$	
$\frac{1}{4} \mathrm{l}=0.25 \mathrm{l}=250 \mathrm{ml}$	$\frac{1}{2} \mathrm{l}=0.5 \mathrm{l}=500 \mathrm{ml}$ $\frac{3}{4} \mathrm{l}=0.75 \mathrm{l}=750 \mathrm{ml}$ $\frac{1}{100} \mathrm{l}=0.01 \mathrm{l}=10 \mathrm{ml}$

 with converting metric measurements for length and mass / weight.
2. Notice how we multiply by 1,000 to turn a larger unit into a smaller one (because there are more of them).
3. To turn a smaller unit into a larger one, we divide by 1,000 as there are fewer.

How do we multiply by 1,000 easily?

$36 \mathrm{li}=\ldots \ldots \mathrm{ml}$	$\ldots \mathrm{ml}=2 \mathrm{li}$	$\ldots \mathrm{li}=8,600 \mathrm{ml}$
$475 \mathrm{li}=\ldots \ldots \mathrm{ml}$	$\ldots \mathrm{li}=8 \mathrm{li}$	$\ldots \mathrm{li}=900 \mathrm{ml}$
$1,800 \mathrm{ml}=\ldots \ldots \mathrm{li}$	$\ldots \mathrm{li}=100 \mathrm{ml}$	$\ldots \mathrm{ml}=5.7 \mathrm{li}$
$18.6 \mathrm{li}=\ldots \ldots \mathrm{ml}$	$1.96 \mathrm{li}=\ldots \mathrm{ml}$	$\ldots \ldots \mathrm{ml}=45 \mathrm{li}$

How do we divide by 1,000 easily?

1. The easiest way to divide by 2.5 is to divide by 5 then just double your answer.
2. The easiest way to divide by 2.2 is to multiply your original number by 10 then divide by 22
3. Multiplying by 2.2 is the same as doubling then adding $1 / 5$ of your starting number.
4. Multiplying by 4.5 is the same as multiplying by 4 then adding half of your original number.
5. The easiest way to divide by 4.5 is to divide by 9 then just double your answer.

4 feet $=$ \qquad inches	\qquad inches $=2.5$ feet	inches $=13$ feet
$\begin{gathered} \quad \mathrm{lbs} \\ =5 \mathrm{~kg} \end{gathered}$	$\overline{=22} \mathrm{~kg}$	$\frac{\mathrm{lbs}}{=20 \mathrm{~kg}}$
$\begin{array}{cc} & 3 \text { gallons } \\ =\quad \quad \text { litres } \end{array}$	$\begin{aligned} & 27 \text { gallons } \\ & =\quad \text { litres } \end{aligned}$	$\begin{gathered} \\ 20 \text { litres } \\ =\quad \quad \text { gallons } \end{gathered}$
$\begin{aligned} & 200 \text { inches } \\ & =\quad \text { feet } \end{aligned}$	$\begin{aligned} & \text { 4.5 gallons } \\ & =\quad \text { litres } \end{aligned}$	$\begin{aligned} & 38 \mathrm{~kg} \\ &=\quad \quad \mathrm{lbs} \end{aligned}$

Miles to Kilometres

You might measure the length of a road or the distance between two cities in miles or kilometres.

1. There are 8 km in every 5 miles.
2. This means 1 mile $=1.6 \mathrm{~km}$
3. It also means, as a fraction, $1 \mathrm{~km}=5 / 8$ of a mile.
4. It also means, as an improper fraction, 1 mile is $8 / 5$ of a km .
5. To convert miles into km , you must divide by 5 then multiply by 8 .
6. To convert km into miles, you need to divide by 8 then multiply by 5 .

8 miles $=\mathrm{km}$	80 miles $=\mathrm{km}$	800 miles
$\begin{aligned} & 24 \mathrm{~km} \\ &=\quad \quad \mathrm{miles} \end{aligned}$	$\begin{aligned} & 240 \mathrm{~km} \\ &=\quad \quad \mathrm{miles} \end{aligned}$	$\begin{aligned} & 2,400 \mathrm{~km} \\ &=\quad \quad \text { miles } \end{aligned}$
$\begin{aligned} & 65 \text { miles } \\ & =\quad \ldots \mathrm{km} \end{aligned}$	$\begin{aligned} & 750 \text { miles } \\ & =\ldots \quad \mathrm{km} \end{aligned}$	$\begin{gathered} 875 \text { miles } \\ =\ldots \quad \mathrm{km} \end{gathered}$
$\begin{aligned} & \overline{18 \mathrm{~km}} \\ &=\quad \quad \mathrm{miles} \end{aligned}$	$\begin{aligned} & \\ & \\ & \\ & =\quad=000 \mathrm{~km} \\ & =\quad \text { miles } \end{aligned}$	$\begin{aligned} & 680 \mathrm{~km} \\ &=\quad \quad \quad \mathrm{miles} \end{aligned}$

Minute 1 minute $=60$ seconds
Hour 1 hour $=60$ minutes
Day 1 day $=24$ hours
Week 1 week $=7$ days

Year 1 year $=12$ months $=52$ weeks $=365$ days
-9
10

1. To turn weeks into years, we divide by 52.
2. To turn years into weeks, we multiply by 52.
3. To turn days into years, we divide by 365 .
4. To turn years into days, we multiply by 365
5. There is a misconception that a month lasts 4 weeks and this is not true - if it were true, there would be 13 months in a year instead of 12 because $52 \div 4=$ 13 , not 12 .

$\begin{aligned} & 8 \text { minutes } \\ &=\quad \quad \quad \text { seconds } \end{aligned}$	$\begin{aligned} & 480 \text { seconds } \\ & =\quad \quad \text { minutes } \end{aligned}$	$\begin{aligned} & 1 \frac{1}{4} \text { hours } \\ &=\quad \quad \text { minutes } \end{aligned}$
$\begin{aligned} & 28 \text { days } \\ &=\quad \quad \text { weeks } \end{aligned}$	$\begin{aligned} & 1 \text { hour } \\ &=\quad \text { seconds } \end{aligned}$	$\begin{gathered} 4 \text { years } \\ =\quad \quad \quad \text { weeks } \end{gathered}$
$\begin{gathered} \\ \\ =\quad \text { week } \\ = \end{gathered}$	$\begin{aligned} & 90 \text { minutes } \\ & =\quad \ldots \quad \text { hours } \end{aligned}$	$\begin{aligned} & 840 \text { seconds } \\ & =\quad \ldots \quad \text { minutes } \end{aligned}$
$\begin{gathered} 1.8 \text { hours } \\ =\quad \text { minutes } \end{gathered}$	$\begin{gathered} \\ 2.5 \text { years } \\ =\quad \quad \quad \text { weeks } \end{gathered}$	$\begin{aligned} & 68 \text { hours } \\ &=\quad \text { seconds } \end{aligned}$

Imperial Measures

Things that could be measured using imperial units:

- Someone's height in feet and inches
- The mass of a bag of sugar in ounces
- The mass of a sack of potatoes in pounds
- A person's mass in stones
- A carton of milk in pints
- The amount of water in a bath in gallons

1. To turn stones into pounds, we must multiply by 14 .
2. To turn pounds into stones, we must divide by 14.
3. To turn ounces into pounds, we must divide by 16 .
4. To turn pounds into ounces, we multiply by 16 .
5. To turn gallons into pints, we must multiply by 8 .
6. To turn pints into gallons, we must divide by 8 .

$\begin{aligned} & 8 \text { stones } \\ =\quad \ldots & \text { pounds } \end{aligned}$	$\begin{aligned} & 196 \text { pounds } \\ & =\quad \text { __stones } \end{aligned}$	$\begin{aligned} & 11 / 2 \text { stones } \\ &=\quad \quad \text { pounds } \end{aligned}$
$\begin{aligned} & 48 \text { ounces } \\ &=\quad \quad \quad \text { pounds } \end{aligned}$	3 gallons \qquad pints	$\begin{aligned} & 48 \text { pints } \\ &=\quad \quad \text { gallons } \end{aligned}$
$\begin{aligned} & 960 \text { ounces } \\ & =\quad \quad \quad \text { pounds } \end{aligned}$	$31 / 2$ gallons $=\ldots \text { pints }$	$\begin{aligned} & 3 \text { stones } \\ &=\quad \quad \quad \text { pounds } \end{aligned}$
$\begin{aligned} & 5.5 \text { stones } \\ = & \quad \text { ounces } \end{aligned}$	4.6 gallons $=$ pints	$\begin{aligned} & 3 \text { stones } \\ = & \quad \text { ounces } \end{aligned}$

